NanoBioElectronics Laboratory Ben-Gurion University of the Negev

Intelligent Microelectrodes Array for Hydroxyurea Quantification in Whole Blood

Matan Aroosh¹, Rajendra P. Shukla¹, Russell E. Ware², Alexander A. Vink², and Hadar Ben-Yoav^{1,*} ¹Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer

Sheva, Israel. ²Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA

Introduction

Sickle cell disease is a common inherited blood disorder that leads to major morbidity and early mortality. It is caused by a genetic disorder that affects the betahemoglobin gene that leads to faulty hemoglobin protein function. <u>The highest prevalence of sickle cell disease is observed in Africa and India and many</u> <u>affected children die before the age of 5 due to lack of proper diagnosis and treatment</u> [1]. Hydroxyurea (HU) has been found as an efficient medication for sickle cell disease. The typical dosage optimization is weight-based with stepwise escalation. However, this kind of process takes several months to achieve [2]. The common analytical techniques for HU detection in blood are high-performance liquid chromatography and nuclear magnetic resonance that are expensive tools and require technical expertise [3]. **Here, we aim** at creating a simple, robust, low-cost, and accurate point-of-care testing device for HU blood quantification based on an innovative intelligent microelectrodes array and by using partial least square regression (PLSR) model for chemometrics analysis.

Methodology

Microfabrication of Modified Multi-Microelectrode Array

Artificial Intelligent Architecture for Chemometrics Application

Conclusions

References

